

Неметаллы. Галогены и водород

Строение атома:

Водород – $1s^1$ Галогены – внешний слой ns^2np^5

Возможные степени окисления:

H -1,+1

F -1 САМЫЙ ЭО ЭЛЕМЕНТ!

Cl, Br, I -1, +1, +3, +5, +7

Физические свойства

Формула простого вещества	Кристаллическая решетка	Кристаллическая решетка	Физические свойства
H ₂	Ковалентная неполярная		Бц газ, с О₂ – гремучая смесь
F ₂			Желтоватый ядовитый газ
Cl ₂			Желто-зеленый ядовитый газ
Br ₂		Молекулярная	Красно-бурая жидкость с резким запахом
			Темно-серое тв в-во с металлическим блеском, при возгонке образует фиолетовые пары

Химические свойства

1) С металлами – образуют бинарные соединения

H ₂	гидрИДы	H ⁻¹	Только с активными Ме при нагревании К + H ₂ = KH
F ₂	фторИДы	F ⁻¹	Na + F ₂ = NaF
Cl ₂	хлорИДы	Cl ⁻¹	AI + CI ₂ = AICI ₃
Br ₂	бромИДы	Br ⁻¹	Fe + Br ₂ = FeBr ₃
	иодИДы	J ⁻¹	He образует высших co y Me Cu + I ₂ = CuI

2) С неметаллами – тоже образуют бинарные соединения

H_2	Да: C, N₂, S, O₂, галогены	HET: Si, P	Проявляет со +1 $H_2 + O_2 = {}^{t} H_2O$
F ₂	Да: все	_	Образует фториды O ₂ + F ₂ = OF ₂
Cl ₂	Да: С, Si, S, P, галогены	HET: N ₂ , O ₂	Образует хлориды Si + Cl ₂ = SiCl ₄
Br ₂	Да: С, Si, S, P, галогены	HET: N ₂ , O ₂	Образует бромиды, кроме Cl₂ и F₂ P + Br₂(изб) = PBr₅
	Да: Р, галогены	HET: C, Si, S, O ₂ , P, N ₂	Образует иодиды, кроме другие галогенов $H_2 + I_2 = HI$

3) Н2 со сложными веществами

Н2 – восстановитель

Восстанавливает металлы средней и слабой активности из оксидов

 $CuO + H_2 = ^t Cu + H_2O$ над

 $Fe_2O_3 + H_2 = FeO + H_2O$

 $Fe_2O_3 + H_2 = Fe + H_2O$

FeO + H_2 = Fe + H_2 O

OS

ЧЕК-ЛИСТ химия

4) Галогены со сложными веществами

• водой

$$F_2$$
 + H_2O = HF + O_2 вытесняет кислород CI_2 + $H_2O \leftrightarrow HCI$ + $HCIO$ диспропорционирование Br_2 + $H_2O \leftrightarrow HBr$ + $HBrO$ диспропорционирование I_2 + H_2O = HE U

• вышестоящий галоген вытесняет нижестоящий галоген из его соединений

$$Hbr + Cl_2 = HCl + Br_2$$

 $Kl + Br_2 = HBr + l_2$

• с щелочами

$$CI_2$$
 + KOH = $^{\text{холодный раствор}}$ KCI + KCIO + H_2O CI_2 + KOH = $^{\text{горячий раствор}}$ KCI + KCIO $_3$ + H_2O Br_2 – как и CI_2 I_2 – только при нагревании I_2 + NaOH = $^{\text{горячий раствор}}$ NaI + NaIO $_3$ + H_2O

Галогены могут образовывать кислородные кислоты

CI	Br	I
HClO – хлорноватистая (гипохлорит)	HBrO	HIO
HClO ₂ – хлористая (хлорит)	HBrO ₂	HIO ₂
HClO₃– хлорноватая (хлорат)	HBrO₃	HIO₃
HClO₄ – хлорная (перхлорат)	HBrO₄	HIO ₄

Получение

H ₂	В лаборатории: Ме(до H) + кислота = соль + H ₂ Fe + HCl = FeCl ₂ + H ₂	В промышленности: $C + H_2O = ^tCO + H_2$ $CH_4A = ^tC + H_2$ $H_2O = ^{3ЛЕКТРОЛИЗ} H_2 + O_2$
F ₂	В лаборатории: не получают	В промышленности: Электролиз КНF ₂
Cl ₂	В лаборатории: окисление HCl и хлоридов $Hcl + MnO_2 = MnCl_2 + Cl_2 + H_2O$	В промышленности: Электролиз хлоридов NaCl = ^{электролиз} Na + Cl ₂

_	В лаборатории: окисление HBr и бромидов Hbr + KMnO ₄ = MnBr ₂ + KBr + Br ₂ + H ₂ O	В промышленности: Восстановление из солей
-	В лаборатории: окисление HI и йодидов	В промышленности: Восстановление из солей

Халькогены. VIA группа.

Строение атома:

Конфигурация внешнего слоя - ns^2np^4

Возможные степени окисления:

	-2 оксиды K ₂ O ⁻²
O	-1 пероксиды H ₂ O ⁻¹ ₂
U	0 O ⁰ ₂
	+2 O ⁺² F ₂
	-2 сульфиды FeS ⁻²
· ·	0 S°
S	+4 S ⁺⁴ O ₂
	+6 H ₂ S ⁺⁶ O ₄

О – второй по ЭО элемент после фтора

Физические свойства

Проявляют **аллотропию** – способность элемента образовывать несколько простых веществ (аллотропные модификации)

Формула элемента	Аллотропная модификация	Физические свойства
О	Атмосферный кислород O ₂	Бц газ, необходимый для дыхания, объемная доля в воздухе 21%
	Озон О ₃	Ядовитый газ голубого цвета с резким запахом
	Пластическая	Резиноподобое вещество
S	Ромбическая	Желтые кристаллы
J	Моноклинная	Темно-желтые игольчатые кристаллы

Химические свойства

1) С металлами – образуют бинарные соединения

	оксИДы	O ⁻²	$Fe + O_2 = Fe_2O3$	Не реагирует с
O ₂	пероксИДы с IA группой, кроме Li	O ⁻¹	$K + O_2 = K_2O_2$ Li + O ₂ = Li ₂ O	серебром, золотом и платиной
S	сульфИДы	S ⁻²	Ba + S = BaS	Не реагирует с золотом и платиной

2) С неметаллами – тоже образуют бинарные соединения

	Да	HET		
O ₂	S, C, Si, N ₂ , P, F ₂ , H ₂	Cl ₂ , Br ₂	Образует оксиды, кроме фтора $N_2 + O_2 = {}^{t} NO^{-2}$ $O_2 + F_2 = {}^{t} O^{+2}F_2$	Реагируют при t
S	O ₂ , C, P, F ₂ , Cl ₂ , Br ₂ , H ₂	Si, N ₂ , I ₂	В зависимости от ЭО неметаллов $S + O_2 = {}^t S^{+4}O_2$ $S + C = {}^t CS^{-2}_2$	

3) О₂ со сложными веществами

О₂ проявляет окислительные свойства

• Если можно повысить со элемента в оксиде

FeO +
$$O_2$$
 = Fe_2O_3
SO₂ + O_2 = t SO₃

• Обжиг сульфидов

$$9S + O_2 = 9O + SO_2$$

ZnS + O₂ = ZnO + SO₂
дисульфид FeS₂ + O₂ = Fe₂O₃ + SO₂
неполное горение H₂S + O₂ = S + H₂O
полное горение H₂S + O₂ = SO₂ + H₂O

• С аммиаком

каталитическое окисление $NH_3 + O_2 = ^{t, kt} NO + H_2O$ горение $NH_3 + O_2 = ^t N_2 + H_2O$

4) S со сложными веществами

• с кислотами-окислителями (HNO_3 , $H_2SO_{4\kappa}$)

неМе + HNO
$$_{3\kappa}$$
 = кислота неМе в высшей со + NO $_2$ + H $_2$ O S + HNO $_{3\kappa}$ = H $_2$ S $^{+6}$ O $_4$ + NO $_2$ + H $_2$ O

неМе + HNO₃ + H₂O = кислота неМе в высшей со + NO S + HNO₃ + H₂O =
$$H_2S^{+6}O_4$$
 + NO

неМе +
$$H_2SO_{4\kappa}$$
 = кислота неМе в высшей со + SO_2 + H_2O S + $H_2SO_{4\kappa}$ = SO_2 + H_2O исключение

• с щелочами диспропорционирование

$$S^0$$
 + NaOH = Na_2S^{-2} + $Na_2S^{+4}O_3$ + H_2O

Качественная реакция на озон $KI + O_3 + H_2O = I_2 + O_2 + KOH$

Получение

	В лаборатории	В промышленности
O ₂	Разложение $KMnO_4 = {}^t K_2MnO_4 + MnO_2 + O_2$ $KCIO_3 = {}^t KCI + O_2$ $H2O_2 = {}^t H_2O + O_2$ $HgO = {}^t Hg + O_2$ $KNO_3 = {}^t KNO_2 + O_2$	Разложение воды $H_2O=^{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$
S	Конпропорционирование $H_2S + SO_2 = S + H_2O$ Неполное горение сероводорода $H_2S + O_2 = S + H_2O$	Отделение серы от самородной плавлением
O ₃	Пропускание электрического тока $O_2 \longleftrightarrow^{\mathfrak{I}_{\mathrm{D}}} O_3$	через О ₂

VA группа IVA группа.

Строение атома:

внешние слои N, P ns²np³ C, Si ns²np²

Возможные степени окисления:

	-3 N ³ H ₃ 0 N ⁰ ₂
	0 N ^o ₂
	+1 N ⁺¹ ₂ O
N.I.	+2 N ⁺² O
N	+3 N ⁺³ ₂ O ₃
	+4 N ⁺⁴ O ₂
	+5 N ⁺⁵ ₂ O ₅
	+6 H ₂ S ⁺⁶ O ₄
P	-3 P ⁻³ H ₃
	0 P°
	+3 P ⁺³ ₂ O ₃
	+5 P ⁺⁵ ₂ O ₅
С	От -4 до +4
C	$C^{-4}H_4$, CaC^{-1}_2 , C^0 , $C^{+2}O$, $C^{+4}O_2$
	-4 Ca₂Si ⁻⁴
c:	o Si ^o
ci	
Si	+2 Si ⁺² O
P	+6 H ₂ S ⁺⁶ O ₄ -3 P ⁻³ H ₃ 0 P ⁰ +3 P ⁺³ ₂ O ₃

Физические свойства

Проявляют **аллотропию** – способность элемента образовывать несколько простых веществ (аллотропные модификации)

Азот не имеет модификаций

 $N_{\scriptscriptstyle 2}$ – газ без цвета и запаха, объемная доля в воздухе 78%

Формула элемента	Аллотропная модификация	Физические свойства
P	Черный	Тв вещество слоистого строения
	Красный	Тв неядовитое вещество
	Белый	Тв ядовитое вещество, самовоспламеняется
С	Алмаз	Бц кристаллическое вещество, самое прочное
	Графит	Темно-серое мягкое вещество с блеском
	Фуллерен С ₆₀	Молекулярные соединения – выпуклые многогранники
Si	Кристаллический	Тв темно-серое вещество со стальным блеском
	Аморфный	

Химические свойства

1) С металлами – образуют бинарные соединения

N ₂	нитрИДы	N ⁻³	$Li + N_2 = Li_3N$	Только с щЭ, щзЭ при t
Р	фосфИДы	P ⁻³	Na + P = t Na₃P	Только с Ме до Н при t
С	карбиИДы	C-4 C-1	$AI + C = {}^{t} AI_{4}C_{3}$	Только с щЭ, щзЭ, Be, Al, Zn при t
Si	силицИДы	Si ⁻⁴	Na + Si = t Na₄Si	

Соединения с металлами подвергаются гидролизу – реакции обмена с водой $Na_3N + H_2O = NH_3 + NaOH$

OS

ЧЕК-ЛИСТ химия

2) С неметаллами – тоже образуют бинарные соединения

	Да		
N ₂	H ₂ , F ₂ , O ₂ (эл. ток, нагрев)	в зависимости от	Реагируют при t
Р	O₂, S, галогены		
С	H ₂ , O ₂ , S, галогены (кроме I ₂)		
Si	O₂, C, галогены (кроме I₂)		

3) N₂ со сложными веществами

Со сложными веществами не реагирует

4) С кислотами-окислителями (HNO $_3$, H $_2$ SO $_{4\kappa}$)

Только С и Р

 $HeMe + HNO_{3K} = KUCЛOTA HeMe в высшей со + <math>NO_2 + H_2O$

$$C + HNO_{3k} = C^{+4}O_2 + NO_2 + H_2O$$

$$P + HNO_{3\kappa} = H_3P^{+5}O_4 + NO_2 + H_2O$$

 $HeMe + HNO_3 + H_2O = кислота HeMe в высшей со + NO$

$$C + HNO_{3\kappa} = C^{+4}O_2 + NO + H_2O$$

$$P + HNO_{3p} + H_2O = H_3P^{+5}O_4 + NO$$

 $HeMe + H_2SO_{4\kappa} = \kappa$ ислота HeMe в высшей $co + SO_2 + H_2O$

$$C + H_2SO_{4\kappa} = CO_2 + H_2O$$

$$P + H_2SO_{4\kappa} = H_3P^{+5}O_4 + SO_2 + H_2O$$

5) С щелочами

Только Р и Si

$$P^{0}$$
 + NaOH + $H_{2}O$ =Na $H_{2}P^{+3}O_{2}$ + $P^{-3}H_{3}$ диспропорционирование

$$Si + NaOH + H_2O = Na_2SiO_3 + H_2$$

6) Восстановительные свойства углерода

Может восстановить из оксидов

• Ме средней и слабой активности при нагревании

$$CuO + C = ^t Cu + CO$$

• щЭ и щзЭ при нагревании

$$CaO + C = {}^{t}CaC_{2} + CO$$

• неМе при нагревании

$$SiO_2 + C = Si + CO$$

$$Co_2 + C = ^t CO$$

7) Кремний с плавиковой кислотой

$$Si + HF_{(ra3)} = SiF_4 + H_2$$

 $Si + HF_{(конц)} = H_2[SiF_6] + H_2$
Травление стекла
 $SiO_2 + HF = SiF_4 + H_2O$

8) Свойства аммиака

Раствор аммиака в воде имеет щелочную среду

$$NH_3 + H_2O \rightleftharpoons NH_3*H_2O \rightleftharpoons NH_4+OH^ NH_4OH$$
 в реакциях не пишем

• с кислотами – образует соли аммония

$$NH_3 + H_2SO_4 = NH_4HSO_4$$

 $NH_3 + H_2SO_4 = (NH_4)_2SO_4$

• окисление – до простого вещества

$$N H_3 + CuO = Cu + N_2 + H_2O$$

• каталитическое окисление $NH_3 + O_2 = t, kt NO + H_2O$

• горение $NH_3 + O_2 = {}^t N_2 + H_2O$

Получение

	В лаборатории	В промышленности	
N_2	Разложение солей аммония	Ректификация воздуха	
Р	Восстановление фосфата кальция углем $Ca_{3}(PO_{4})_{2} + C + SiO_{2} = ^{t} CaSiO_{3} + CO + P$		
С	Восстановление СО₂ магнием		
Si	Восстановление SiO₂ магнием		

